B T3 l
ARMY RESEARCH LABORATORY ‘ | R

Outer Analysis of Quality

by Trevor Cook

ARL-TR-7159 January 2015

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so
designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the use
thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory

Adelphi, MD, 20783-1138

ARL-TR-7159 January 2015

Outer Analysis of Quality

Trevor Cook

Computational and Information Sciences Directorate, ARL

_Approved for public release; distribution is unlimited.
.__]

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to
comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
January 2015 Final
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Outer Analysis of Quality

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER
Trevor Cook

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
S Army Research Laboratory REPORT NUMBER
ATTN: RDRL-CIN-T
2800 Powder Mill Rd. ARL-TR-7159
Adelphi, MD 20783-1138
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

We use type signatures to discuss several specific notions of quality in order to showcase how the simple discipline can aid in
the inspection and definition of vague and intuitive notions. We model qualities as functions, thereby shifting attention from
what they are to what they may be based upon. The ultimate aim being the design of systems that can deliver high quality data
for arbitrary definitions of quality. The report includes a short description of algebraic data types.

15. SUBJECT TERMS
Quality of Information, Category Theory, Type Theory

17. LIMITATION | 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON
16. SECURITY CLASSIFICATION OF: OF ABSTRACT OF PAGES Trevor Cook
a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (Include area code)
. . . Uu 28
Unclassified Unclassified Unclassified (301)-394-1851

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. 239.18

il

Contents

1. Introduction

2. Qualities and Ordering

3. Data and Information

4. Pertinence

5. Completeness

6. Accuracy

7. Precision

8. Freshness

9. Timeliness

10. Estimation

11. Related Work

12. Conclusion

13. References and Notes

Appendix. Algebraic Data Types

1l

10

12

12

14

15

16

17

Distribution List

v

21

1. Introduction

In this report, we analyze some common concepts of data quality. Indirectly, our aim is to remove
ambiguities associated with these concepts, with the ultimate goal of designing systems that
deliver high quality data. Our immediate aim, however, is to provide an alternate approach to

thinking about—and communicating notions of—information and quality.

If we want to specify general, universally applicable definitions of various qualities, we must
avoid specifying how to calculate any particular quality relating to specific data and applications.
One approach to this is to propose an ontology that captures the essential structure of quality and
then somehow decide how any specific metric fits with the ontology. This approach is not
undertaken here. We leave this structure open and instead focus on giving form to individual
notions—without regard to whether or not they are necessarily parts of a specific collection, “the

qualities.”

In this report, we present an “outer analysis” of qualities, a circumscription of each particular
notion. Outer analysis is a term associated with category theory. Its connotation is an investigation
of (mathematical) objects by looking at their relationships with other objects, as opposed to
inspecting the internal, element-wise structure. In this vein, we describe qualities such as

accuracy, etc., as functions and analyze them in terms of their inputs and outputs.

We use type signatures with forms similar to A : Q — N. This example signature describes some
function named)\, which takes rational numbers, Q, in the domain to natural numbers, N, in the
co-domain. For example, the ceiling of the absolute value of a rational, A (¢) = [|¢|], adheres to

this type signature.

Type signatures are used in category theory, form the basis of various type theories (including
typed lambda calculi), and are often generally used in the presentation of various branches of
mathematics. This analysis is not a rigorous treatment based solely in any one discipline,
however. But we do want to hint at least that such a treatment is based in very deep and
foundational theories of math and logic, and more rigorous treatments will benefit from the

insights discovered in those theories.

It is likely that most readers will disagree with at least some parts of the descriptions of the
qualities outlined below. Let me stress that we make no claim that these descriptions are either

authoritative or comprehensive. I do not even claim that the treatment is entirely consistent.

Where flaws are found, please consider the role of the signatures in finding those inadequacies.

2. Qualities and Ordering

Whether implicit or explicit, we say that a particular need for information relates to an evaluation

of data encapsulated by a function with the form
quality : D — @),

where D is the type of data and () is at least a partially ordered set. So quality provides an
ordering or preference by assigning each value d : D (pronounced d of type D) to value q : ().
The data, D, can be a complex compound consisting of multiple sub-types and/or choices

between types of sub-data, especially as an algebraic data type (ADT).!

A partial ordering, or poset, is a set equipped with an ordering relation, <. The ordering is
reflexive, ¢ < ¢, transitive, i.e., ¢ < ¢, ¢ < ¢" = ¢ < ¢”, and antisymmetric,

q<¢,¢ <q = q= (. The ordering is partial though; for any ¢, ¢’ :), it may be the case
that neither ¢ < ¢/ or ¢’ < ¢. The need for a preference over data requires some sort of ordering,
and posets are nearly the weakest kind of ordering, so we take () (and variants: @)', Q*, ...) to be a

poset in this report.?

3. Data and Information

We use 2 objects—D and /—in the development of specific descriptions of qualities. Both objects
should be taken as a variable of sorts, where D is any object we would consider as data and / can
be any object we might call information. We don’t say much about the particular nature of D or [;
it’s mostly just an assertion that there are two different concepts. The reason we differentiate at all
arises from the definition of accuracy, as a comparison between the captured data, D, and some
underlying thing the data represents, /. This choice also informs other decisions, for instance,

defining pertinence in terms of I and precision in terms of D.

Although it is perhaps unnecessary in this treatment, we can give a little more of the working
intuition about the relationship between D and /. We say that the data, D, indicates, contains—or

may indicate—the information, /, and that we acquire data for sake of the information it contains.

The information component of data is a partial function, represented as mapping from data to

either the underlying information, /, or a constant ‘“no information” value, 1:
mfo: D —T+1.

Given a piece of data, d : D, info (d) might yield either a piece of information of the requisite
type, ¢ : I, wherever the partial function is defined, or a default “unknown” value, 1 : 1, for
undefined inputs. The details for why the form of ¢n fo is equivalent to a partial function over D

are given in Awodey,’ example 7.26.

As an example of the above, a photograph may provide information about a person’s location,
written

infoer : Image — (Person x Location) + 1,

where the information in this case is the pair of objects Person and Location. Given an image,
we might learn something about a person being at a location, e.g.,

inforor (pic) — ("Al", "Times Square"). On the other hand, if the image was blank we get,
inforoor (blank) — 1.

The signature of in fo also provides a default method for injecting any data to the realm of
information, with, in fop,,. (d) — d. In that case, the data itself becomes the object of interest—we
want the object for the object’s sake. Such was the case when I was looking for the picture of the
time I met Al Pacino in Times Square.* I already knew the contents of the picture, nonetheless I

still wanted it.

We also hold that the reverse case need not be possible. That not all information can be injected
into the realm of data. For instance, Location as an instance of information, may be used to
represent actual physical places, not just coordinates or names. We may, for instance, derive from

a location coordinate data, but the location itself might be unrepresentable.

I find the above distinctions between D and [intuitively pleasing. However, we shouldn’t insist
that these distinction are the right way to look at these concepts, or even necessary—in the sequel
or in general. The development of these intuitions were done in tandem with the resulting quality

descriptions, so any rethinking of the below may also require some reworking of the above.

4. Pertinence

Pertinence is the notion of having the “right” information, in the sense that a piece of information,
¢ : I, may or may not be topical. As a result, we might say pertinence evaluations have the
following form:

pertinence : [— 2,

where 2 is the set {0, 1} with 0 < 1. This follows the strict true/false concept of pertinence. We
define pertinence over, /, with the expectation that [is the thing we want to know. Generalizing
this, we can alternatively say

pertinence : I — @)

if information has varying levels of applicability.

As an example of pertinence, if I want to know the temperature outside, I may have a function,
pertinencey,. : Location X Temp — Q,

which assigns a higher evaluation to locations near my window than in the next town over. So, my
window thermometer may be more pertinent than a reading I get from a weather station via the
Internet. From the discussion above, we take Location to be the actual location of the temperature

reading and not some possibly flawed reporting.

To evaluate data in terms of pertinence, we want something of the form
pertinencega, : D — Q.

We attempt to build a definition through the composition of pertinence with the function that gets

the needed information from the data:
pertinencegq, = pertinence o in fo. (D)

However, the types do not match up. The output of in fo is I 4+ 1 and the input of pertinence is I.
We need to do something with the case where the information is not contained in the data.

The most general solution lies in the “lifting” of I — () into context / + 1 —) + 1. This is
available (since + is functorial, and there is only ever one function to the terminal object 1,

!': a — 1). The lifted function is written
pertinence’ : I +1— Q +1

pertinence’ = pertinence+!. 2)

The resulting definition can be given with
pertinencegae : D — Q + 1

pertinencegq, = (pertinence+!) oinfo. 3)

If we let Q* be a pointed set with a distinguished element identified by % : 1 — Q*, we can

collapse @ + 1 to Q*, via the coproduct [id, *]. Thus we achieve a function from D to Q* with
pertinencege, : D — Q°

pertinencegq, = |id, %] o (pertinence+!) oinfo. “)

The above development may be daunting, so some exposition is in order. There are 3 entities
involved in the evaluation of data’s pertinence. First, we need a way, in fo, to map the data to the
underlying information that we are interested in, acknowledging that the information may not
actually be there. Second, we need to define a way, pertinence, of saying how topical the
information is, without regard to other quality questions. Third, we need to assign a quality to the
case wherein the information was not in the data, *. Besides those 3 elements, the other aspects,

id, [,], +!, exist as invariants and plumbing for the functional composition.

5. Completeness

We describe completeness as the totality of pertinent information. Like pertinence, we also take

completeness to be an evaluation solely based on information,

completeness : [— Q,

with the understanding that some information will tell a more complete story than others. As it
stands, completeness and pertinence are indistinguishable at the type level, so this description is

unhelpful.

We can distinguish them by imposing some additional structure on the information’s type, 1,
through the use of parametric polymorphism. We let S' p be some structure, .S, inhabited by any
underlying primitive type, p. Some examples of such structures are powersets, S p = 27; pairs or
other n-tuples, S p = p X p; homogeneous lists with all elements of type p, S p = [p]; or even
structures additionally inhabited by concrete types, S p = ErrorCondition + p,or S p =N X p.
Note that the foregoing are all examples of algebraic data types.

Following the above, we let information be defined as a structure over primitives, I = .S P,

completeness be defined as some evaluation over information,
completeness : S P — Q'
and let pertinence be an evaluation over the primitives,
pertinence : P — ().

This leads to the possibility of using pertinence in the calculation of completeness. As such, we

have a signature that takes a pertinence function as an input:
completeness : (P — Q) x S P — @Q'.

Notice that given a particular pertinence, p : P — (), the signature resolves to the previous
signature, completeness : S P — ()'.

As a concrete example, we can build a completeness measure from pertinence based on subset
membership. Assuming that we want completeness (s1) <¢ completeness (s2) only when the
pertinent subset of s; belongs to that of s,. We merely have to define ()’ = 2F, with the ordering,
<(, inherited via the subset relationship of 2P Next, we use a particular pertinence evaluation, p,

to find the subset of pertinent information with
completenesspertrtemy : (P —2) x S P — S P
completenesspertprems (p;s) = {ili € s,p (i) =1}. 5)

Of course, this definition of completeness may not suit some tasks. It only allows comparison

between sets of information when one is a subset of the other. Instead, a task might demand that

the greatest quantity of pertinent information is favored. In that case, we may have (' = Z, and

completenessgyy, - (I = Z)x ST — 7

completenessgum (p, s) = Zp (7). (6)
i€s
Different behavior can now be obtained with the definition of pertinence. For instance,
p (i) — {0, 1} treats all equally sized subsets of pertinent information as the same completeness,
p (i) — {—1, 1} will favor subsets with only pertinent information over subsets with
non-pertinent information, and of course, any general p (i) — n € Z is still available. Going
further still, we need not tie completeness to summations of pertinence; we could have instead

used products, logical expressions, or any other operation that the types allow.

Finding the completeness of D, as opposed to [, follows the same development as pertinence,
above. Namely, for a given completeness measure, we have to decide how the data maps to the

info, in fo, and how to rate the null information, *.

6. Accuracy

Our notional concept of accuracy is that it measures how well the data reflect the intrinsic
information. We write accuracy : I x D — (), as any function that somehow compares data, D,
to the underlying information, /. This is the first time we have used the concepts of both data and
information together, and it is indeed accuracy that makes the separation necessary. An example
of accuracy is the image compression quality metric, picture signal-to-noise ratio (PSNR), which

compares a compressed image with that of the original, psnr : Image x Image — R.

Of course, there are accuracy concerns waiting in the wings of the above quality considerations,
such as pertinence. As the signature requires, the concern rises through the use of the function
that invokes both objects; info : D — I + 1. In the case of pertinence of location data, for
instance, we want our data to be proximal to a location, but we also want our reported location to
reflect our actual location. We are careful to provide a separation between these two concerns,

which is enabled to a large part through our distinction of D and I.

Accuracy is a fundamentally important concern in the analysis of quality. It comes into play
whenever we capture data from information or when we project data into the realm of

information. Assuming that all data arises from information, we might measure accuracy solely in

terms of information

accuracy : I x I — @,

where one / is the original information and the other / is the inferred information. Following this,
any data calculation for accuracy would depend on both the method in which that information

was captured, / — D, and the method by which it was injected back into information, D — [:
accuracy : (I — D) x (D — 1) x D — Q.

We develop a modest treatment of accuracy in our dealings with freshness; however, a full

treatment is beyond the scope of this report.

7. Precision

Precision is a measure of the ability to capture or express information. In empirical sciences, it
relates to the repeatability of measurement and is also often described as the significant digits of a
number. Given the deliberate divorce of precision from “actual” value, we take precision to be an

evaluation based purely on the structure of the data,

precision : D — Q).

It is unclear how to add any clarity to the concept with this definition of precision. As it stands,
any function that inspects data and returns a number fits this signature. Also, the definition in
terms of significant digits is already a good one. One area of particular interest not covered by

significant digits, however, is in the precision of language.

Consider simple algebraic strings using numerals, variables, addition, multiplication, etc., as an

example of a language whose statements we want to evaluate. Some example expressions in the
language are “5 4 (2% 3)”, “54 67, and “11”. All of these strings represent the same thing, 11.
However, more information is contained in “5 + (2 % 3)” in that it tells one more about how the

eventual value is produced.

If we look at the expressions as abstract syntax trees, we get

7\
2/ \3,

5/+\6,

“117 = 11.

54 (2%3)7 =

£45 + 677 —

and

This helps illustrate the point that there is an underlying structure to our expression as well as the

data present at each node in the structure.

We shouldn’t jump to the conclusion that a bigger structure is more precise, however. A list

[5,2, 3] can be represented with a structure such as

7N
2/ \3,

but we can succinctly specify a list of 100 elements, each with value 1, without writing down the
whole 99-level-deep structure. So if our language is strong enough to specify both lists and the
shorthand for creating lists, comparing statements may entail program calculation. This brings to

bear questions of reduction strategies.

With formal languages, different reduction strategies can lead to differences in the result,
especially in the case of termination vs. non-termination. So we have the possibility of ambiguity
in language through the choice of calculation. Natural languages are worse still, in that statements

are often open to interpretation.

Ambiguity is a key element of precision, as we consider a statement to be more precise when

there are fewer possible interpretations. We must be careful, though; by invoking interpretation,

we are letting the “actual” meaning, i.e., the information, creep back into our definition.

8. Freshness

Freshness is a quality metric where we rate the data based on how old it is. Unlike the other
metrics, this is the first instance of asserting a specific data/information entity, 7'2me. For

freshness, we need 2 instances of time, the data’s time and the current time,
freshness : Time x Time — Q).

We choose the pair, T'ime x Time, as opposed to some time difference, ATime, because there is
more information with the pair. This signature shows freshness as a preference over a pair of
times, or, given the current time, a preference over age. The signature is nice in its simplicity but,

for better or worse, divorced from the data whose freshness is being evaluated.

We could add some detail to this by specifying how exactly the time is related to the data and how

the current time is derived. Indeed, we need some functions,
Trime - D — Time

clock : World — Time,

which get the time from the data and the time from the world. Then, passing these functions to

freshness, we have the signature

freshness : (D — Time) x (World — Time)

X (World x D)

— Q,

which makes explicit that freshness depends not only on an evaluation of 7%me x T'%me, but on

how we came to know this pair of times.

Just for fun, I elaborate further. We really want freshness to reflect an actual passing of time. That

is, our data’s time and our current clock’s time should both reflect a function, time (tA), which

10

ages the world ¢ units, as in the following diagram:

I/Vorlafm6 tA)VVorld

a
/ j clock l clock
t

. +ta .
Data — Time - > Time
Ttime

As such, our calculation entails estimating the parameter, At, such that all paths in the diagram

are equivalent (the diagram commutes). However, there are a few wrinkles to this.

First, we don’t know whether or not clock captures time uniformly. Specifically, given 2

equivalent durations of time, ¢, we have no assurance that our 2 estimations, a1, t a2, are equal:

V[forldwm(tA >VVorla;Zm6 fa >VV07‘ld

l clock j clock j clock
t t

. +ta1 . ttaz .
Time - >Time - >Time

This can be modeled by assuming a perfect clock, in the sense that any £a1, a2 as above both

equal tA. Then a function, 1, adds error to the reading as a function of time:

I/Vorla;me tA)I/Vorld
/ jclock jclock
Data Time 28 Time

ST

. +ta .
Time - >Time

Now, freshness can be seen not only as a function of a pair of times, but also of an error function,
7, whose value at the data’s capture time is determined in part by how the data are captured, «,

and whose value at the current time is determined by the implementation of a current clock.

From the above, we see that the calculation of freshness isn’t pretty, in that, it carries with it
further concerns about quality. Specifically, there is an accuracy concern of the form,
accuracysresy : (T'tme x Time) x (Time x Time) — @, wherein we compare the times read
by a perfect clock versus the times read by the user. I have illustrated the concern here for the sake
of narrative, but I don’t mean to imply that it is a characteristic of freshness alone. Indeed, any

quality measurement may carry with it associated accuracy concerns.

11

9. Timeliness

To round off the quality analyses, we visit timeliness, which reflects the notion that the usefulness
of data depends on when it is inspected. Like freshness, timeliness can be specified with
timeliness : Time x Time — (). Here however, we assume that the times now represent the
current time and the future time. Like freshness, the signature is nice in its simplicity; it is simply
a preference over the future. Again though, for better or worse, it is divorced from the data whose

timeliness it evaluates.

The elaboration for this scenario mirrors that of freshness, with the exception that we no longer

rely on the data to tell us the time it was captured:

Worla;m;(tﬁ)ﬂforld

Tdata
jclock: lclm
t

Time AL Time Data

P b

. +tA .
Time - >Time

This diagram shows that after the world advances some ¢ from its current state, we can check the
clock and also inspect the data, 74,,,. Any disparities, 1, from the perfect clock are now a function

of the actual time that was inspected during those two instances.

This is a simple scenario. Worse yet, it seems to force one to wait around ¢A to make a
calculation. We hold that this is how timeliness should be specified, as a preference over the
current time and future times. However, we want to make the judgment of whether or not we

should attempt to access the data, so to continue our analysis, we look at estimating timeliness.

10. Estimation

Estimation of quality is fundamentally important to the task of providing high quality data.
Consider the above discussion on timeliness, wherein a user needing data cares how long it takes

for the data to be presented. Given that the user has presented the system with a trade-off function,
q:7Z xTime — Q,

12

the system would be well advised to consider which forms of Z it may deliver at which T%me and

select the estimate with the greatest evaluation.

Notice here that we intend to estimate quality based on an estimate of data. This is a tricky
prospect, for we may have a process, A : Z' x Time — Z x Time, which transforms some 7’
into the requisite type, Z, but also advances time, 7ime. However to evaluate, ¢, we need to

provide a Z, which we will not have until running A on the candidate data.

One enticing solution to this problem is by providing a general purpose data profiler,
pT'Of : P(D’HD) X (D/ — D) x D' — (D, P(D’HD)) ,

which for any o : D" — D, and initial profile of o, Pp/—, py, and input data d' : D', we apply
a (d') to provide the output d : D along with an updated profile. Next, when an estimate is

needed, we use the profile and input data,

est : P(D’—)D) x D' — D.

To perform the estimation of (2',¢) : Z’ x Time, we would have the profile, py : Pz x1ime), and
would just call est (py, (2/,1)), to yield (z, t). Such profilers do exist. Trivially, the profiler can
essentially capture an exemplar d : D and the estimate presents d for every subsequent estimation.
Obviously, such an estimation scheme will often deliver poor results. Future research will

consider ways one might beat the trivial profiler estimation.

As simplistic as the trivial profiler may be, it has the advantage of a constant evaluation time. This
is an important point as our evaluation function, g, in this section considers time a factor. We
haven’t taken into account the time of estimation or the time taken by the functionality that is
figuring what data to reply, but it should be apparent that the quality of the delivered data will

depend on the timeliness of the estimation and the estimates they provide.

Another interesting nuance to this problem is in the self-referential estimation of the performance
of the system when processing requests. The user gets the system to deliver data by supplying a

quality evaluation to a request function, which we can pose as
request : St x (D — Q) — (St — D) x St.

Given a current state, st : St, and the evaluation ¢ : D — @), request (st, q) returns a new state

and a function allowing the user to access the data from the state, 7p : St — D. We pose the

13

returned data in terms of the state to make specific the connection between the state and the

required data. That is, we advance the state and then access the data.

If we let app (f, x) = f(x), then we have a function, app o request : St x (D — @) — D, which
returns a desired data based on some other data. As in the discussion above, the request function
should consider functions that may yield desirable data and so should estimate its own expected
performance. This bit of nuance is unsurprising and apparently relates to defining exit conditions
on searches or tolerances on numerical estimations. Although unsurprising, it is satisfying to see

this concern surface as a result of our analysis.

11. Related Work

The jumping off point of this report has its origin with Bisdikian® and similar publications.® The
theme of these is in providing data in military networks (especially sensor networks) with quality

metrics, annotation schemes, and a quality specification framework. The work may be suitable for
closed and controlled networks; however, it is unclear whether or not the concepts are directly

generalizable to arbitrary information systems.

One assumption in the above work is that various quality metrics can be captured at the source for
later data consumers to base their usability judgments upon. The generalization leads to
questions. For instance, can we capture an accuracy metric for all arbitrary data? Are the accuracy
measurements of any two types of data directly related? If so, how do we ensure such? If not, in

what way do they both capture the same thing?

To address those open questions, work similar to the approach taken in this report has been
published!® ! where we argue that besides the data, provenance will be the basis for any quality
evaluations. In other words, a preference over data quality requires a preference over the methods
of creating data. The simple reason being the functions that create the data also determine the
characteristics of the data. The prescription given by these works are accordingly simple—to
provide high quality data, we should track data and functionality. This solution is elegant, since

keeping track of functions is already needed to manipulate data for increased usability.

This report is similar to the work on provenance in that that work uses the same underlying
language of type signatures. Those articles steer clear of putting to form any particular qualities,
and so this report adds support for the applicability of those treatments.

14

12. Conclusion

In this report, we have explored several notions of quality through the use of type signatures. The
purpose was to show how such a simple methodology can aid discussion of the concepts involved

and will hopefully lead to design principles for quality aware systems.

I have been careful to mention that I do not claim these concepts to be the “true” or “right”
concepts of quality. Accordingly, I make no claims that a comprehensive ontology of quality
exists, or that any particular concept is applicable across all data. Certainly one should be
skeptical of such claims without evidence. Notwithstanding, we take as given that data is variably

suited to various applications, so something such as the foregoing analysis is in order.

With all our caveats, the question becomes, how does this discussion aid in the design of quality
aware systems? Our primary contribution is in the reframing of the problem. This is a subtle shift,
but instead of declaring that there are several quality dimensions that any data can be evaluated
against, we leave the evaluations open ended and look at what these evaluations could possibly be
based on. We have abandoned the prescriptive approach of declaring what quality is to one

wherein we seek to support any evaluation of quality that may be provided.

15

13. References and Notes

10.

1.

See the Appendix for an introduction to ADT.

We could weaken from a poset to a preorder by dropping the antisymmetry requirement, but

this doesn’t appear to be useful.
Awodey S. Category theory. volume 49 New York: Oxford University Press; 2006.
Never actually happened.

Bisdikian C, Kaplan L, Srivastava M, Thornley D, Verma D, Young R. Building principles
for a quality of information specification for sensor information. In: Information Fusion,
2009. FUSION ’09. 12th International Conference on; p. 1370 —1377.

Bisdikian C, Verma D, Kaplan L, Srivastava M, Thornley D. Defining quality of information
and metadata for sensor-originating information. In: 4th USMA Network Science Workshop;
p. 1-14.

Bisdikian C, Kaplan LM, Srivastava MB. On the quality and value of information in sensor
networks. ACM Trans. Sen. Netw. 2013;9(4):48:1-48:26.

Bar-Noy A, Cirincione G, Govindan R, Krishnamurthy S, LaPorta T, Mohapatra P, Neely M,
Yener A. Quality-of-information aware networking for tactical military networks. In:
Pervasive Computing and Communications Workshops (PERCOM Workshops), 2011 IEEE

International Conference on; p. 2 —7.

Bisdikian C, Branch J, Leung K, Young R. A letter soup for the quality of information in
sensor networks. In: Pervasive Computing and Communications, 2009. PerCom 2009. IEEE

International Conference on; p. 1-6.

Cook T, Toth A. Information processing and quality evaluations. In: Pervasive Computing
and Communications Workshops (PERCOM Workshops); p. 1-7.

Cook T, Scott L. Type based abstraction for qoi aware applications. In: Military
Communications Conference, 2012 - MILCOM 2012; p. 1-6.

16

Appendix. Algebraic Data Types

17

An algebraic data type (ADT) encapsulates the inductive definition of a data type in terms of
concrete values, type parameters, product types (x), and choice types (+). A few examples of

ADTs are given here, with pointers to further research on the topic.

The list type,
List a = Nil+ (a x List a) , (A-1)

is a fairly comprehensive construction, which uses all unarguably ADT features: parametricity,
product, sum, and recursion. If @', a”, ... are data of type a, then data of type List a are of the form
Nil,a' x Nil,a"” x a’ x Nil.... Special notation using square brackets and commas are often used

for lists, so the previous sequence of lists is also written as [], [d'] , [@”, d'],....

Reading the type of List a, we see how it forms the rule for creating the example lists. The
definition reads that a list with elements of type a are either a null list, Nil, or an element of type
a and more list. The type parameter, a, on the left side of the definition lets lists be polymorphic in
type. Examples are the list of integers, [1, 3, 9] : List Integer; and the string, “word”, represented

as lists of characters, ['w’) o', ') d'] : List Char.

To programmers coming from the imperative world (e.g., C, Java, Python, Matlab, and Ruby), the
most familiar element of constructing an ADT is undoubtedly the product, x. It is used to create
data with multiple fields as in C structures. For instance, a circle defined by a center point and radius
can be represented with a triple of floating point numbers, C'ircle = Double x Double x Double. Of
course, useful languages let programmers label the fields (accessors) so they make fewer mistakes

programming with the data type.

The sum, +, (co-product) type allows a programmer to specify between two alternatives. This was
seen already in the definitions of List a and in fo. Using parametric polymorphism, the canonical
choice between any two types can be given as Fither a b = a + b. Another special class of co-
products are enumerated types of the form, 7" = 1 4 1. As in the case of products, languages allow
labeling of the choices for the sake of program consistency. For instance, Bool = True + False

is isomorphic to 7.

ADTs get their name due to theoretical foundations in universal algebra, which describes algebraic
structures as a triple consisting of a carrier set, X'; a set of functions, X2, from n-tuples of X-es to X;
and a set of equations over the elements of X. Category theory provided a unifying framework for
universal algebra, describing algebras as a carrier, X, and a co-product function, «, from a functor,
F,to X:a: FFX — X. Initial algebras are of special interest. They are algebras, o : F'X — X,
satisfying that for any other F-algebra, 8 : F.X — X, there is a unique mapping from a — f.

18

They provide the basis for both specifying data via an ADT and proofs via induction for statements
about ADT data.

The categorical treatment of data via initial algebras indicates a dual notion, called final co-
algebras. Co-algebras have been shown useful for modeling transition systems, infinite streams,
and context free languages. Generally, “co-data” models objects that we cannot construct but can
observe and manipulate via an abstract interface. As such, it may be desirable to model some

information such as Location or Time as co-data.

Co-algebras also provide a proof principle dual to that of induction, co-induction. While data is
formalized using denotational semantics relying on initial fixed points, final co-algebras provide
formalization of the operational semantics of co-data, relying on final fixed points. An introduction
to initial (and final co-)algebra can be found in Jacobs and Rutten.! Rutten has expanded the theory
of universal co-algebras? and many more example applications can be found in the publications on

his web page at Centrum Wiskunde & Informatica.’

It is a stated intent of this report to at least hint how the use of type signatures is interwoven
with some deep mathematical theories. We have already seen an application of category theory in
the design of data. Category theory also provides further insights for the modeling and study of
computation. Notable among these are the Monad,* which is a composable model of computational
contexts such as failure conditions, input/output (I0), and mutable state; and the Functor, modeling

abstract containers that can be mapped over, such as trees and lists.

There is a vein in the computer science research for generating functions based on data definitions.
That is, building general recursion schemes based on folds (aka map reduce) and unfolds.> More
recently, Hinze® has demonstrated generalized recursion schemes based on adjoint functors. Such
efforts are aimed at providing program assurances such as termination and have lead to optimiza-

tions such as stream fusion.”® Another interesting application for ADT is in the deriving a traversal

1Tacobs B, Rutten J. A tutorial on (co)algebras and (co)induction. EATCS Bulletin 1997;62:62-222.

ZRutten JJIMM. Universal coalgebra: A theory of systems. Theor. Comput. Sci. 2000;249(1):3-80.

*homepages.cwi.nl/~janr.

“Wadler P. Monads for functional programming. In: Advanced Functional Programming; Springer; 1995; p. 24—
52.

>Meijer E, Fokkinga M, Paterson R. Functional programming with bananas, lenses, envelopes and barbed wire. In:
Functional Programming Languages and Computer Architecture; p. 124—144.

%Hinze R. Adjoint folds and unfolds. In: Mathematics of Program Construction; p. 195-228.

"Hinze R, Harper T, James DW. Theory and practice of fusion. In: Implementation and Application of Functional
Languages; Springer; 2011; p. 19-37.

8Coutts D, Leshchinskiy R, Stewart D. Stream fusion: From lists to streams to nothing at all. In: Proceedings of the
12th ACM SIGPLAN International Conference on Functional Programming; ICFP *07, New York, NY, USA: ACM;
2007. p. 315-326.

19

structure for a data type based on the derivative of that type,” which is, in turn, generalized for any

data type representable as the initial fixed point of a polynomial functor.'?

In summary, ADTs provide an adequate basis for modeling many types of data. They are founded
in well-established mathematical theories and amenable to formal reasoning. Furthermore, the dual

notion may prove useful for modeling objects not easily captured as data, i.e., systems.

"McBride C. The derivative of a regular type is its type of one-hole contexts.

10McBride C. Clowns to the left of me, jokers to the right (pearl): Dissecting data structures. In: Proceedings of the
35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages; POPL 08, New York,
NY, USA: ACM; 2008. p. 287-295.

20

(PDF)

(PDF)

(PDF)

(PDF)

DEFENSE TECHNICAL
INFORMATION CTR
DTIC OCA

US ARMY RESEARCH LAB
ATTN IMAL HRA MAIL & RECORDS MGMT
ATTN RDRL CIO LL TECHL LIB

GOVT PRINTG OFC
ATTN A MALHOTRA

US ARMY RESEARCH LAB
RDRL-CIN-T
TREVOR COOK

21

INTENTIONALLY LEFT BLANK.

22

